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LIQUID CRYSTALS, 1989, VOL. 5 ,  No. 2, 443-461 

Invited Lecture 
Order-parameter theories of phase diagrams for antiferroelectric 

smectic-A phases 

Role of orientational degrees of freedom 

by LECH LONGA 
Universitat Paderborn, Physikalische Chemie, Postfach 1621, 4790-Paderborn, 
F.R. Germany, and Jagellonian University, Department of Statistical Physics, 

Reymonta 4, Krakow, Poland 

Using exact relations between Landau and molecular approaches, the symmetry- 
induced topologies of phase diagrams are studied for antiferroelectric smectic-A 
phases. In particular, the tricritical points are found for a large class of order- 
parameter theories of nematic-smectic A (-Al, -A,) and -A, (NA) phase transitions. 
These include generalizations to antiferroelectric smectic-A phases of McMillan 
and Meyer-Lubensky mean-field theories and the Ramakrishnan-Youssouff (RY) 
density-functional approach. The use of these different approaches allows study of 
influence of various couplings between nematic (orientational) and smectic 
(translational) degrees of freedom and polarization field, PI (cos Q), on various NA 
and AA phase transitions. From the results, it is of interest that the coupling 
between orientational degrees of freedom (P4(cos 6) )  and density waves can 
destabilize the smectic-A phase at low temperatures-pointing to the existence of 
a nematic-smectic-A-reentrant-nematic phase transition. A possible relation of 
this result to A,, Cz, Cd and e phases is discussed. Some relations between Fourier 
components of correlation functions and order parameters a t  tricritical points are 
derived from the RY density-functional theory. Despite some limitations, the 
theory presented here seems to provide the simplest approach to study topologies 
of phase diagrams in molecular theories. 

1. Introduction 
The nematic state of liquid crystals is characterized by long-range orientational 

order of constituent elongated molecules [I], which are on average aligned with their 
long axis parallel to a certain common direction, say 2, which is called the director. 
Additionally, at the nematic-smectic-A (NA) phase transition the continuous trans- 
lational symmetry is spontaneously broken, resulting in a one-dimensional density 
modulation parallel to 2. Thus a weak layer structure is observed in the smectic-A 
phase with a periodicity d z I ,  where I is the length of a molecule. 

One of the attractive features of the NA transition is that it may be first- or 
second-order. This interesting possibility was predicted theoretically by McMillan 
[2, 31 and de Gennes [4], who took the effect of coupling between orientational and 
translational degrees of freedom into account. They showed that close to the nematic- 
isotropic phase transition (TNA/TNI % 1, where TNI is the nematic-isotropic transition 
temperature) the character of the NA transition is governed by the nematic order 
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444 L. Longa 

parameter, which results in the transition being first order. On the other hand, for 
small values of TNA/TNl (TNA/TNI  4 l), the orientational order saturates and as a 
result the character of the transition is governed by a purely translational order 
parameter, leading to a second-order phase transition. Consequently, a tricritical 
point is predicted at an intermediate value of TNA/TNI. In the McMillan theory [2, 31 

Another mechanism for the NA tricritical point was suggested by Meyer and 
Lubensky [5]. They discussed the effect of higher-order Fourier components of the 
one-particle distribution function on the character of the transition, while assuming 
perfect orientational order in both the smectic-A and nematic phases. By studying 
various forms of interlayer potentials and solving the mean-field Euler equations for 
the one-particle distribution function numerically, they showed that the nature of the 
NA transition is governed by the ratio V,/V, of the two lowest-order Fourier 
components of the pair potential. For V,/V, < $ the transition is second-order, 
occurring at a temperature T = V,/kB (kB being Boltzmann’s constant), while for 
V,/V, > + the transition is first-order. Thus the tricritical point is predicted for 
q/V, = i .  They concluded that higher-order harmonics of the potential are irrelevant 
in determining the character of the NA transition. Their analysis implies that for 
smectic interactions localized in the centre of the layer the transition should be 
first-order, and that with increasing delocalization the character of the transition 
should finally change to second-order. 

Following the development of the ideas discussed above, a great deal of experi- 
mental effort has been spent in attempting to determine the character of the NA phase 
transition in real systems [6-121. In general, the McMillan-de Gennes suggestion has 
been confirmed, showing that the tricritical point occurs when the McMillan ratio 
TN,,/Th, is larger than 0-99. Furthermore, the topology of the phase diagrams obtained 
resembles those of McMillan [12]. Also, detailed studies of the tricritical exponents, 
in particular of the nematic and smectic order parameters, yield mean-field tricritical 
values [ 121. This indicates that a description of the corresponding phase diagrams 
using a Landau-type expansion should lead to correct qualitative predictions. Finally, 
there is no experimental evidence on the classical NA phase transition to support the 
mechanism proposed by Meyer and Lubensky. 

In summary, the experimental data existing at present favour the McMillan- 
de Gennes mechanism for the NA tricritical point and simple molecular models. 

The analysis as given raises the question of whether the model proposed by Meyer 
and Lubensky is relevant at all for NA tricritical behaviour. With small modifications, 
a positive answer to this question is provided by the recent discovery of a new class 
of antiferroelectric smectic-A phases by the Bordeoux group [13]. More precisely, it 
has been shown [13-231 that liquid crystals consisting of molecules with a strongly 
polar end group such as CN and NO, give rise to other types of smectic-A phases. 
Among these, we can distinguish the A,, A, and A, phases: 

this Was found to OCCUr at TNA/TNI % 0.87. 

smectic-A, is similar to smectic-A, but with a layer spacing dincommensurate with 
the molecular length 1. Typically one finds d x 1.41; 

smectic-A, is an antiferroelectric double-layer phase with two commensurate layer 
spacings d, z 21, d, % I; 

smectic-A, is antiferroelectric like A,, but with only one characteristic layer 
spacing d x 1. 
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There are other antiferroelectric smectic-A phases that develop an additional 
modulation parallel to the layer, but these will not be considered here. Interestingly, 
no ferroelectric smectic-A phase, as suggested by Photinos and Saupe [24], has been 
found. 

A phenomenological model based on a general Landau free-energy expansion was 
developed by Prost [25] to account for the variety of antiferroelectric smectic-A 
phases. In this theory it is assumed that strong dipolar interactions introduce a new 
order parameter to the problem, i.e. the polarization field with overall antiferroelectric 
symmetry, whicb, in general, does not need to be commensurate with the smectic-A 
density wave. Owing to the coupling between four order parameters (nematic, 
smectic-A, antiferroelectric and layer periodicity), the Prost theory qualitatively 
explains the experimental observations and predicts a large number of multicritical 
points. 

A possible molecular origin of the Ad, A, and A, phases has been discussed in our 
recent paper [26] (see also [27, 281). The important mechanism that stabilizes various 
phases was identified as the competition between dispersive and dipolar interactions 
in connection with steric repulsion. It was also found from estimates of these inter- 
actions in various phases that the ferroelectric smectic-A phase with non-zero global 
polarization is strongly destabilized. An alternative molecular description has been 
proposed by Guillon and Skoulios [29] and Indekeu and Berker [30]. 

The evidence as given clearly demonstrates the relevance of a study of molecular 
mechanisms, leading to both qualitative and quantitative understanding of differences 
between the behaviour of ‘classical’ and strongly polar liquid crystals. In particular, 
the role of orientational degrees of freedom and higher-order harmonics on the 
character of these phase transitions has not yet been studied systematically. Clearly, 
there is a need for a relatively simple method of calculating the phase diagrams and 
tricritical points for a given molecular theory. The commonly used direct method is 
rather inefficient and difficult. It is based on solving the self-consistency equations for 
the order parameters and comparing the free energies of various allowed solutions 
(see e.g. [2, 3, 5, 10, 24, 31, 321). In the vicinity of a tricritical point this method is 
sensitive to the accuracy of the order parameters and of the corresponding free 
energies. As shown by Kloczkowski and Stecki [33], a relative accuracy better than 
lop8 is required for the free energy in order to describe the tricritical point in the 
McMillan theory correctly. 

To overcome these difficulties, Kloczkowski and Stecki [33] showed yet another 
way of solving this problem. They found approximate relations between the coefficients 
of the Landau theory and the molecular parameters of the McMillan model. Using 
these relations, they calculated the tricritical parameters of the model. The calculations 
were much easier than those of McMillan [2, 31 (see also [lo]), since only information 
on the orientational order parameters in the nematic phase was required. Furthermore, 
the method was found to be less sensitive to the accuracy of various intermediate 
results. 

In our recent papers [34, 351 we generalized this method by incorporating some 
symmetry properties of low- and high-temperature phases into the formalism. More 
precisely, our line of approach was to seek the minimum information necessary to 
solve the problem of a tricritical point in order-parameter theories exactly. By ‘exact’, 
we mean here all steps that must be performed to locate a multicritical point in a 
molecular theory, which is analytical in the order parameters. In particular, we found 
equations for the NA tricritical temperature in terms of derivatives of the free energy 
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446 L. Longa 

with respect to the order parameters taken in the nematic phase. The relations derived 
in [33] appeared as special cases of those discussed in [34, 351. 

The main purpose of the present paper is to demonstrate the wider applicability 
of this method. In particular, we concentrate on a molecular description of the phase 
diagrams of antiferroelectric smectic-A phases that generalizes the model calculations 
[26]. After deriving equations for the tricritical temperatures of NA, NA, (n = 1, d, 2) 
and A ,  A2 transitions, we shall discuss universal properties of these transitions in terms 
of competition between McMillan-de Gennes and Meyer-Lubensky mechanisms. 
Some specific mean-field models will also be solved. In studying possible topologies 
of phase diagrams, the role of orientational degrees of freedom will be emphasized. 

This paper is organized as follows. In $2 we outline the main results of [34, 351. 
In $3 the general formulae of $2 are applied to the problem of antiferroelectric 
smectic-A phases. The free energy is defined in $4 in terms of the order parameters. 
Model calculations of tricritical points are found in $5 ,  which also includes some 
discussion. Final remarks are given in $6. 

2. Comments on the order-parameter theories of multicritical points 
In [34, 351 we reported on exact calculations of tricritical temperature for some 

molecular models of the NA phase transition. It is the purpose of this section to 
outline and comment on the main results of these papers; some of them will be used 
in the next section. 

The starting point of our discussion is the Landau expansion of the free energy in 
powers of an order parameter x [36, 371: 

2N 

F = Fo + 1 a,x' ,  a2N > 0, (1 4 
I = I  

where F ,  is the regular part of the free energy. The coefficients of this expansion 
depend, in general, on the temperature, the pressure and the other thermodynamic 
variables. When performing the expansion (1 a) it is implicitly assumed that the 
system undergoes a phase transition from a state of thermodynamic equilibrium with 
symmetry Go to another state of thermodynamic equilibrium with symmetry GI, 
where GI is a subgroup of Go,  and that the phase transition is described by a singfe 
order parameter x. 

By definition, the transition point is said to be an Nth-order multicritical point if 
2N Landau coefficients (including the order parameter) vanish simultaneously. In 
particular, at a critical point we have 

x = a1 = a2 = a, = 0, a4 > 0. (1 6) 

x = a, = a, = a, = a4 = a5 = 0, a6 > 0. (1 c) 

while a tricritical point requires 

The relations (1 b,c) simplify considerably at the tricritical points of antiferro- 
electric smectic-A phases. In this case all the phases have different symmetries, which 
implies that a, = 0. Next, the existence of a line of second- and first-order phase 
transitions rules out a3 and a5 (a3 = a, = 0). Consequently, the calculations of the 
tricritical temperatures for a given molecular model of the A phases are reduced to 
finding the coefficients a,, a4 and a6 in the Landau expansion (1 a). 

On the other hand, in molecular theories of phase transitions the free energy can 
be considered as functional of the one particle distribution function P(1), itself a 
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function of the 'relevant' degrees of freedom '1'. For example, P ( l )  = P(r,  4) for 
liquid crystals. The equilibrium distribution function is obtained by the minimization 
of the free energy with respect to the variation of P(1). The necessary condition is 

As the symmetry of the low-temperature phase is known, we can expand P( 1 )  in 
terms of the basic functions (YF(1)) of irreducible representations of G , :  

where 

jd(1) ~ ( 1 ) ~ ; * ( 1 )  = Snrndvp (3  b) 

and where XI: = f d( 1) P(l) 'PI:*( 1); here n parametrizes irreducible representations 
while p labels all functions belonging to the same n. Now the symmetry of high- and 
low-temperature phases allows identification of non-vanishing invariant combinations 
of the coefficients (x:} in the expansion ( 3  a). These combinations provide us with the 
definition of the order parameters { x ,  x E }  for our problem. Again we assume that the 
phase transition is driven by a single order parameter x, i.e. x # 0 implies that all 
secondary order parameters x,  # 0. As the (Y:(l)} are known functions, the free 
energy depends effectively on (x, x,} ,  and the integral equation (2) can be written as 
a set (in general infinite) of nonlinear equations 

aF 
- F, = 0, 
ax (4  4 

(4  b) 

Now choosing x as an independent variable and noting that ( x i }  are implicit functions 
of x ,  determined by the self-consistency equations (4  b), we can construct the Landau 
expansion for F around x = 0. It reads 

1 dnP 
,,=, n!  dx" 

F = F" + 1 - - x " ,  

where [34, 351 

dFo 
dx 

d2 F" 
dx2 

d3 F" 
dx3 

d4 Po 
dx4 

d5Fn 
dx' 

- = a,F" = g ,  

- -  - D2Fn = F:x + D,F:, 

- = D3Fn, 

- -  - D4Fn - 3D:F0, 

- -  - D'F" + 10D3D2Fn + 15DiDp,  

- -  d6Fn - D6Fn + 15D4D,Fn + 45D;D2Fn 
dx6 
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448 L. Longa 

and where superscript zero denotes that all derivatives are taken in the high-temperature 
phase ( x  = 0). Here D and D, are differentiation operators, defined by 

d" xo 
D = a, + D,, D, = 12 axi , 

i = l  dx" 
D i  = D m D m . . - D m  

n-times 

where dmxi!dxm are the solutions of the linear equations 

and where 

Al = a,, A, = D2, A, = D3 + 3 D 2 D , .  . . . 

Equations (5) and (6)  allow the calculation of critical and tricritical temperatures 
provided that the derivatives of the free energy with respect to the order parameters, 
taken in the high-temperature phase ( x  = 0), are known. These are given by various 
molecular theories. 

Note that (5) and (6) display a hierarchical structure with respect to the derivatives 
{ d m x i / d x m } .  As a rule, only derivatives of order not exceeding n are necessary for 
calculating the coefficient d2"Fo/dx2" = n! u2,, . Interestingly, further simplification of 
(5) and (6) is achieved by studying the symmetry properties of the derivatives ~ m , n , , , x p .  

Clearly, these must satisfy relations that follow from the Clebsch-Gordan couplings 
of GI in Go:  

r 

where {no, vo) are Go-invariant states. 
The proportionality (6 d )  implies that many of the coefficients in (6 a) must vanish 

by symmetry. Some examples are given in [36]. Typical examples of molecular theories 
to which the above formalism applies are finite-order virial, cluster, Y expansions or 
standard mean-field theories. 

Some features and restrictions of this method are immediately clear. First, it 
applies to a molecular theory that is analytical in the order parameters. Secondly, the 
orthogonality relations (6 d )  between functions belonging to irreducible representations 
of GI are crucial here. They allow solution of the infinite set of equations (6 c). More 
precisely, only for {Y;(1)} does the set (6c) effectively reduce to a small number of 
equations (see & 3-5). This last statement does not hold for other (inequivalent) 
parametrizations of P(1). 

Finally, the equation u2 = 0 determines the critical temperature, if the phase 
transition is of second order, or the supercooling temperature, if the phase transition 
is of first order. The higher-order coefficients determine the character of the phase 
transition (relations ( 1  b, c)). Obviously, the method may not work too well in 
determining the first-order transition temperature, where the equilibrium value of x 
is finite and the convergence of the series can be questionable. In this case an 
alternative procedure, such as that suggested by Katriel et al. [37], may work better. 
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3. Theory of the smectic-A tricritical points 
In this section we apply the formulae ( 5 )  and (6)  to a particular case of the NA, 

NA, (n = d, 1, 2) and A,  A, phase transitions. More precisely, we find exact forms of 
the operators D, for these cases. 

As already discussed in 9 1, the A, and Ad phases appear to be similar to the 
classical smectic-A phase in that they show a single quasi-Bragg spot in X-ray 
scattering experiments. In the A, phase a doubling of periodicity is observed compared 
with the A, phase, i.e. an additional quasi-Bragg spot appears at a wave vector 
q x 2421. This observation can be interpreted in terms of long-range antiferro- 
electric ordering of neighbouring single layers. Thus in the general NA problem the 
relevant degrees of freedom ‘1’ are 8 and z ,  where 8 is the angle between 2 and the long 
molecular axis. Additionally, the one-particle distribution function should described 
antiferroelectric double layers at low temperatures, which implies [26] that 

where 2d is the double-layer spacing ( d  z 1) of the A, phase. In our description we 
shall keep the layer spacing d constant. This assumption corresponds to one of the 
cases obeyed by the Prost model [25]. 

With the symmetry restrictions (7 a )  fulfilled, we find it physically useful to 
introduce an order-parameter expansion of P( 1) in terms of Legendre polynomials 
and Fourier series: 

P(cos 8, z )  = 1 + 2 C (4L + ~ ) ~ ~ L + I , , ~ + , P ~ L + , ( C O S  0) cos [(2n + 1)qzI 
L,n=O 

where P satisfies the normalization condition 
2d 

dz P(COS 0, Z )  = 1 

and where ( [ L , n ,  yL, z,, D ~ , ~ )  = ( x ~ , ~ )  are the order parameters 
2d 

dz P(COS 8, Z)P,(COS 0) cos (nqz). (7 4 

In the ideal nematic-order approximation, which will also be discussed in the next 
section, the expansion (7 b) reads 

P(s, z )  = 1 + 2 C i2,,+,s cos [(2n + l)qz] + 2 T~,, cos (2nqz), ( 7 e )  
n = O  n = l  

where the pseudospin variables = f. 1 is introduced instead of cos 8. The integration 
over cos 8 is reduced to a summation over s. The choice of the point of reference for 
the density modulation in the geometrical centre of the molecules ensures that no 
terms of the form sin (rnqz) appear in (7 b, e) .  

Four different phases are described by the distributions (7 b, e): 
(i) isotropic: 

(ii) nematic: qZL # 0, 
52L+1,2n+l = y2L = z2, = cr2L,2n = 0; 

L + , , Z n + l  = z2n = 02L.2, = 0; 
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450 L. Longa 

(iii) smectic-A, -A, or -A, (if I < d < 21): qZL # 0, ~2~ # 0, C T Z ~ , ~ ~  # 0, 

(W smectic-A,: q 2 L  # 0, z2n f 0, 0 2 L , 2 f l  z 0, 52L+, ,Zf l+ l  + 0; 

5 2 L + 1 , 2 n + l  = 0; 

The order parameter x is identified for the A, phase with il,, = 5. for A, A, and 
A, phases, x = z2 = z or 02,,. As the exact results must be independent of the choice 
of x, we assume that x = z. 

The relations (6 d )  now express either the momentum conservation of the smectic 
order-parameter interactions in the nematic phase or the Clebsch-Gordan relations 
between Legendre polynomials. They reduce the number of non-vanishing coefficients 
in the formulae for the operators D,. More specifically, the following exact relations 
hold. 

Nematic-smectic-A, and isotropic-smectic-A2 transitions 
With x = cl, ,  E 5, the equations (5) yield 

where the numerical coefficients in D and D, satisfy linear equations similar to those 
in [35] and where superscript zero refers to the nematic phase. 

Only the two lowest-order wave vectors are necessary to determine the character 
of the NA, transition. The third-order wave vector is responsible for the stability of 
the NA2 tricritical point. Similar formulae are found for the isotropic-smectic-A, 
transition. 

Smectic-A, -smectic-A, transition 
In this case the order parameter x may be identified as 5, leading to the formula 

(8 a)  for the operator D. However, the operator D2 differs from (8 b) is the presence 
of terms depending on z2,. It reads 

Again the coefficients in the formulae for Dl and D, satisfy linear equations similar 
to those given in [35]. But now the superscript zero refers to the A (A,) phase. 

The above formulae allow practical calculations of tricritical temperatures in 
theories where the orientational part of the two-particle interactions is expanded in 
Legendre polynomials. If this is not the case then an alternative would be to replace 
(6) by an equivalent formulation in terms of Fredholm integral equations of the'first 
kind [34]. 

The formulae for the operators D for the nematic-smectic-A transition are given 
in [XI .  

4. Specification of the free energy 
In this section we apply the formulae derived in the previous section to a general 

mean-field model of the antiferroelectric smectic-A phases. 
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Let us consider a system of axially symmetric rigid molecules, interacting through 
the two-particle potential 

V = - V(r, , ,  F,, Q , ,  PI, - Q,, Q, - 6,). (10) 
Here 0 ,  and Q 2  are unit vectors defining the orientation of the elongated molecules 
while F,, is the unit vector pointing from the centre of mass of molecule 1 to the centre 
of mass of molecule 2.  After expanding (10) in a spherical-harmonic basis [38,  391 and 
averaging the resulting expression over the degrees of freedom of the particle ‘2’, 
weighted with the distribution function (7 b), we arrive at the potential of the mean 
torque felt by molecule ‘1’: 

where V,,, = 0 if L and N are of different parity and 

x V(r , , ,  PI, - G I ,  PI, ii,, Q, - Q,)PL(cos t9,)PN(cos 0,) cos (mqz) 
(1 1 b) 

otherwise. 
The symmetry of the two-particle interaction influences the final form of the 

operators D,, (9, (6) .  For example, a substantial difference is expected between Ds 
for separable (i.e. independent of f,,) and non-separable potentials; this is connected 
with the different nature of the orientational part of the interaction (10). For separable 
potentials, only the parameters I‘LLrn are non-zero which means that all two-particle 
configurations with a fixed distance between centres of mass of the molecules and a 
fixed relative angle between Q, and 0 ,  give the same contribution to the interaction 
energy in the nematic phase. A similar statement holds true for the antiferroelectric 
smectic-A phases, provided that the distance between centres of mass of molecules is 
a multiple of the basic layer spacing. Finally, in the ideal nematic-order approximation 
only the potential parameters KO, = V, are relevant. 

Formula (1 1 a)  is a direct generalization of that proposed by Kuzma and Allender 
[32] .  Note, however, that, in order to get (11 b), it is not necessary to perform the 
additional average over a plane, perpendicular to 2, as postulated in [32] .  the formula 
(1 1 a)  is obtained by projecting out this part of the interaction (lo), consistently with 
the antiferroelectric symmetry (7 b) .  

Now, combining (7 b) and (1 1 a), we write down the mean-field free energy per 
particle as 

I 

- - - & j0’” dz, j-, d(cos e l )  v,,(cos el ,  z , )p(cos e,, z , )  - t in z, F 
e 
- 

(11 c)  
where 

I 

(11 4 1 2d z = 4 d J 1  dz, j d(cos e l )  exp [-t-iv,,(cos e l ,  z , ) ]  
- 1  

and where t = k,  T/Q and Q = N/  V. As (I  1 c ,d)  define the free energy in terms of the 
order parameters xL, , ,  ( 7 4 ,  it is now a straightforward matter to calculate the 
Landau coefficients ( 5 )  and consequently the tricritical temperature. 
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Another very interesting type of order-parameter theory was proposed by 
Ramakrishnan and Youssouff (RY) [40] to describe liquid-solid transition. It was 
later generalized by Sluckin and Shukla [41] and Lipkin and Oxtoby [42] to treat the 
isotropic-nematic and nematic-smectic-A transitions respectively. In this approach 
the free energy is related to direct correlation functions of the high-temperature liquid 
phase at constant temperature and chemical potential. These can be measured experi- 
mentally or found from independent theoretical calculations. Interestingly, in the 
simplest non-trivial approximation the resulting free energy is a functional of the 
one-particle distribution function and of the direct correlation function C( 1, 2). The 
latter is defined in terms of the molecular pair-distribution function g(1, 2) by the 
Percus-Yevick equation. Under the additional assumption that the isotropic liquid is 
incompressible, the RY free energy of the antiferroelectric smectics, divided by Nk, T, 
is identical with (1 1 c) if e is replaced by 1 ,  V(1, 2) by kB TC(1, 2) and V,,, by 
k, TC,,, . Additionally, the one-particle distribution function must be normalized 
to N .  

Consequently, the mean-field parameters can be interpreted in terms of the 
structural parameters C,,,. Thus, using the formalism of $2, we find relations at the 
tricritical point between the order parameters xLm and some ratios of the CLNm. 

It is worth mentioning that the neglect of higher-order correlations is equivalent 
to the assumption that, close to a phase transition, the differences between pair 
correlations in the high-temperature liquid phase and in the low-temperature liquid 
phase are very small. 

5. Model calculations and discussion 
Our purpose now is to apply the formalism discussed in the previous sections to 

some models of the antiferroelectric smectic-A phases. Though the results will be 
interpreted in terms of the parameters VNh, the same conclusions hold true for the 
C N L m .  

As follows from (8) and (lo), the tricritical properties of the system (11) are 
independent of the details of the translational part of the pair potential. Only the 
orientational part of (1 I), which is responsible for the nematic background, must be 
specified. Below, we list the necessary approximations in each case. We start by 
discussing the classical NA transition. Some of the results will also serve as a direct 
test of the validity of the equations ( 5 )  and (6). 

5.1. Generalized James-Humphries-Luckhurst model of the nematic-smectic-A 
transition (only L = N = 2, 4 terms are retained in (1 I a)) 

There are already several theories of formation of the classical smectic-A phase 
[l-5, 10, 32-35]-some of which have been described in $1 .  Here we concentrate on 
a generalization of those results. Our purpose here is to give a partial answer to the 
question of what happens when the McMillan-de Gennes and the Mayer-Lubensky 
mechanisms compete. In order to make the analysis feasible, we must decide on how 
many terms with different L to retain in the pseudopotential (1 1 a). Since the terms 
with P,(cos 0) lead to qualitatively new results, the series (1 1 a)  is truncated after the 
terms with L = 4. 

The above model is a generalization to smectic-A phases of that proposed by 
James, Humphries and Luckhurst (see [43]) for nematics and that of Kuzma and 
Allender (KA) [32]. The exact analysis of the mean-field properties of this model was 
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presented in our recent paper [35]. Here we shall concentrate on the effect of the P4 
terms in (1 1 a).  As shown by KA, the negative values of the V,, coupling cause the 
molecules to tilt, on average, with respect to the direction perpendicular to the layer. 
However, the molecules are placed in each layer in such a way as to preserve the 
uniaxial symmetry of the smectic-A phase. This means that the maxima of the 
distribution function P(cos 6,  z )  shift from cos 6 = f 1 positions to cones around 
the director. 

The concept of molecular tilting discussed here was proposed some time ago by 
deVries [44]. It is consistent with experimental measurements of smectic layer spacing 
in classical-A phases, which show that d is less than the molecular length 1. 

In the mean-field calculations the tilting of the molecules follows directly from the 
mathematical structure of the Legendre polynomial P4( y),  which has maxima at 
y = ? 1, 0. Thus, for negative values of V,, in the pseudopotential ( I  1 b), a barrier 
develops between the states parallel and perpendicular to the director, which effectively 
shifts the maxima of the distribution function at y = f 1 towards the state y = 0. 

Guided by this last observation, we performed more general calculations of the 
NA critical temperature by solving the equation d Z  Fo/dT2 = 0. We showed that at low 
temperatures all maxima of the distribution function are well separated and that the 
states around y = 0 may help to destabilize the A phase. Typical results of numerical 
calculations are shown in figure 1. Interestingly, in the case of extreme competition 
between various maxima of the distribution function there is a possibility of nematic- 
smectic-A-reentrant-nematic phase transitions, which are stabilized by higher-order 
couplings &24 and V,, . These couplings were disregarded in the KA theory. Further- 
more, each of the phase transitions NA and AN, can be tricritical, since the stability 
of the tricritical points is governed by still-higher-order terms V,,, and V& (figure 2). 
Note that the equations u4 = 0 and u6 = 0 can be analysed independently, since they 
are polynomials in the different coupling constants, like G24,  V,, and G26, V,, 
respectively. 

The results as given seem to indicate the importance of the orientational degrees 
of freedom in the problem of the re-entrant phase transitions in liquid crystals [44-461. 
We may expect that a broadening at low temperatures of dominant, side maxima of 
the orientational part of the smectic-A distribution function would help to destabilize 
the A phase. If the dimer model [47] correctly describes the mechanism of the AN, 
transition then the increase of the dimer concentration when the temperature is 
lowered will give rise to such an effect. This, in turn, can help to destabilize the 
smectic-A phase at low temperatures as indicated by our calculations. 
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Figure 3. Monomer and dimers in the Goullon-Skoulios model [29]. The arrows indicate 
positions and orientations of dipole moments. 

An alternative interpretation may be proposed in terms of a modified version of 
the Goullon-Skoulios (GS) model [29]. 

According to GS, the antiferroelectric phases are attributed to the formation of 
head-to-head dimers in combination with single molecules (monomers) (figure 3). In 
this picture the A, symmetry is recovered provided that there is disorder of the dipoles 
inside the layer. An additional transverse interaction between the dimers may stabilize 
the A, order. 

Suppose now that the preferred direction (8) for the dimers to align is tilted with 
respect to the layer normal in the A, phase (figure 3), where ( . . . ) denote the thermal 
average and where 0 6 8 6 fn. This effect could account for the layer periodicity 
1.6 d d/l < 2. At low temperatures it could help to destabilize the A, phase towards 
reentrant nematic, smectic-C,, -Cd or -c phases. 

Finally, let us concentrate on the importance of the mechanisms proposed by 
McMillan and deGennes and by Meyer and Lubensky by solving the tricritical 
condition a4 = 0 for different values of V,, . The characteristic tricritical boundaries 
are obtained as shown in figure 2. The results are presented so as to emphasize the 
differences with the Meyer-Lubensky model. 

Notable features of these diagrams are 

(a) a strong dependence of the topology of the diagrams on higher-order couplings 
between orientational and translational degrees of freedom; and 
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(b) a strong nonlinear dependence of the tricritical parameters on orientational 
degrees of freedom at both low and high critical temperatures. 

5.2. The smectic-A, phase and related phase transitions 
The simplest type of antiferroelectric-A phase is probably the bilayer A, phase. In 

our model it is described by the order parameters ( M , n ,  (9 a,b). For non-zero values 
of (u,n this implies an antiferroelectric symmetry of the distribution function (7 b). 
Thus we may expect a qualitatively different behaviour of the phase diagrams 
compared with the classical NA phase transition. Using the results of the previous 
sections, we show that this is indeed the case. More precisely, we concentrate on the 
description of isotropic(1)-A, , NA, and A, A, transitions. In particular, we shall 
discuss how orientational degrees of freedom and higher-order harmonics influence 
the topology of phase diagrams. 

Isotropic-smectic-A, transition 
Interestingly, the antiferroelectric symmetry (7 a) allows both first- and second- 

order phase transition to occur between isotropic and A, phases. In this case the 
equation a2 = 0 yields 

t = VII, % '  (13) 

which is valid for the general interaction potential (1 1 a). In order to study the 
tricritical condition a4 = 0, we shall additionally assume that the interactions between 
particles are separable. Now, combining the critical and tricritical conditions yields 

which must be satisfied at the tricritical point. From equation (14) it follows that the IA, 
phase transition is of second order for small or negative values of the parameters h2*, 
y222 and Go, . This possibility would imply very strong intensity of the [OOl] Bragg spot 
of double layer compared to the [002] one. A first-order phase transition is expected 
when the opposite holds. As far as we know, the direct phase transition IA, has not 
yet been observed experimentally. 

Nematic-smectic-A, transition 
In the ideal nematic-order approximation the NA, transition is described by the 

Meyer-Lubensky theory. When the molecular orientations are allowed to fluctuate, 
the Meyer-Lubensky theory is modified in a very simple way. More specifically, for 
pair potentials that are separable in the antiferroelectric degrees of freedom, i.e. 
q L + l , 2 N + l , m  = 8 L N & L + l , 2 L + l , m ,  the condition a, = 0 yields 

t = (~(P,(cos 0)) + 1)V,i, ( 1 5 4  

here ( . . . ) denotes the thermal average over translational and orientational degrees 
of freedom. Importantly, (1 5 a) is independent of the description of the nematic state 
that is employed. A general pair interaction leads to very complicated relations 
between t and the effective coupling constants. 

Equation (15 a) shows that the influence of orientational degrees of freedom on the 
critical temperature is to reduce the effect of Kl, coupling. In general, the critical 
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1 0 F  10TNA, 

6 

2 
20v,,l' v*,, 

0 4 8 

Figure 4. Critical temperature for the NA, transition in the ideal nematic-order approximation 
(a) and for the James-Humphries-Luckhurst model [43] with VM/V,z, = 0 (b), + (c), - 6 (d ) .  

temperature is lower than that calculated in the ideal nematic-order approximation 
( ( P 2 )  = 1). In contrast with what is found for the classical NA transition, the NA, 
phase diagrams should be characterized by a high degree of universality. This is 
shown in figure 4, where the nematic phase is described by means of the James- 
Humphries-Luckhurst potential. 

The tricritical conditions u2 = u4 = 0 lead to a rather complicated relation 
between the model parameters (see (A 1) in Appendix A). Although complicated, this 
relation depends only on (P,) and (Pi). At intermediate temperatures, where 
( P : )  FZ (P , )2 ,  the formula (A 1)  simplifies considerably, yielding 

l O G 3 2  = (W,) + i )G ,  - 10~:22(P2)*. (15b) 

The solutions of (A 1) and (15 b)  are illustrated in figures 5 (a-c). 

30 
15 - 

0 4 8 

Figure 5. Tricritical boundaries for the NAz transition as found from (A 1) (continuous line) 
and from the approximate relation (1 5 b) (broken line) for KZ2 / = - 0.2 (a), 0 (b), 
0.2 (c). The straight line on the diagrams corresponds to the ideal nematic-order solution. 

Smectic-A,-smectic-A, transition 
In this case we expect a rather small influence of orientational degrees of freedom 

on the transition temperature. Because of this, we shall restrict our analysis to the case 
when nematic order is saturated. 

In the ideal nematic-order approximation the A, A, phase transition may be 
viewed as an antiferroelectric condensation of pseudospin degrees of freedom in the 
well-developed layer structure of the A, phase. Since the A, order forms a background 
for the A, phase, we expect the higher-order harmonics of the one-particle distribution 
function (7 e) to be important. Indeed, a resolution-limited (003) Bragg peak has been 
observed experimentally in the A, phase [18]. In agreement with this observation, we 
retain in the pseudopotential ( 1  1 b) the terms V,, = & with I < 3. The forms of the 
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loyz. 4 n 

- 
0 4 lot '2 

Figure 6. The A,A2 tricritical point for 5 = 0 shown as the intersection of two curves: 
(a) 72 found from the self-consistency equations (B3); and (b) z2 calculated from the 
system of equations (B I), (B 2). 

10 

5 

0 

-5 i ,  I I \ l a 1  

50 

>N 

>- 
9 

-25 

\ 

0 

-75 

Figure 7. (a) Solutions of the equations (B 1) (continuous line) and (B2) (broken line). 
Corresponding branches are indicated by the same letter. (b)  Tricritical surface (B 2). 
Curves are parametrized by V, / 6 .  The self-consistency equation (B 3) has not been taken 
into account. 

Landau relations a2 = a4 = 0 that result from (5) after a fair amount of algebra are 
given in Appendix B. As expected, these are polynomials in V, , V,  , V, , t and z2, where 
t and z2 are related via the self-consistency equations (B 3). After choosing the energy 
scale, V,  = 1, the equations (B 1) and (B2) only depend on three parameters. The 
numerical solutions to these equations are easily found (see figures 6 and 7). In 
figure 6 the simpler case V, = 0 is shown, with a tricritical point occurring at 
t = 0.889, V, = 0.612 and z2 = 0.453. The tricritical point appears here as a result 
of coupling between 5 and z2. The mechanism generating the tricritical point is similar 
to that proposed by McMillan and de Gennes. More precisely, close to the NA 
transition the smectic order parameter z2 varies strongly with temperature, resulting 
in the A,A, phase transition being first-order. For z2 > 0.453 the variation of z2 
becomes less important, and the transition is continuous. 

A qualitatively new solution is obtained for V, > V,* % 0.45 (see figures 7 (a&)). 
In this case coupling between 5, C3 and the smectic-A order parameters zi ( i  < 6) 
becomes relevant (branches (b) in figure 7 (a)). This situation is only expected to be 
important in cases where many Bragg reflections are observed at the transition. Again, 
for V3 < G* the tricritical mechanism is the same as in the case of V, = 0 (branches 
(a) in figure 7(a)). By taking higher-order couplings into account (Kn+, > 0),  the 
second-order A, A2 phase transition may be eliminated. 
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Finally, in figure 7 (b) we show the structure of the tricritical surface a4 = 0. The 
results can be correlated with the structure parameters C, /C , ,  C,/C, and z2 .  

6. Final remarks 
In this paper we have extended our earlier work [26] on antiferroelectric smectic-A 

phases to include the effect of orientational degrees of freedom on the topology of 
phase diagrams. In particular, we have considered the influence of breaking the 
up-down symmetry of mesogenic molecules on the occurrence of the A phases in 
molecular theories. The molecules are represented by axially symmetric rigid rods 
with soft angle-dependent interactions (dipolar, dispersive, etc.). 

It should be emphasized that the minimum ingredients have been sought for in 
order to study exactly the influence of orientational degrees of freedom and higher- 
order harmonics on the topology of the phase diagrams. 

More precisely, we have derived the conditions for the tricritical points in a large 
class of order-parameter theories. These conditions are found by ‘projecting out’ a 
molecular theory onto the Landau expansion. In this way a minimal set of conditions 
can be identified, allowing the calculation of tricritical temperatures (for a detailed 
discussion see 55).  Interestingly, the hierarchical structure of the Landau coefficients 
allows general predictions to be made without the necessity of performing numerical 
calculations. For example, from the formulae for the operators D it follows that the 
phase diagrams may exhibit not only tricritical points separating first- and second- 
order transition regions but also triple point N-A,-A, or multicritical points like 

We believe that this analysis is attractive for at least three reasons. First, we expect 
the smectic-A tricritical points to be classical tricritical points. This is supported by 
experimental measurements of tricritical indices for the nematic and smectic order 
parameters [12]. Thus we expect that the molecular theories can be used to classify 
phase diagrams and correlate their features with molecular properties. Secondly, a 
large number of recent papers have been devoted to the topology of phase diagrams 
in mixtures of strongly polar liquid crystals. In these studies the role of orientational 
degrees of freedom has not yet been taken into account. The third reason is that the 
tricritical conditions, when interpreted in terms of generalized RY theory, only 
depend on structural parameters. These may be checked experimentally or theoretically 
from independent molecular calculations. Some very simple relations of this type have 
been derived from generalized RY theory. These relations become very complicated 
when higher-order correlations are included in the free-energy functional. In this case 
the tricritical conditions depend on couplings between all coefficients CLMn. 

Finally, we should point out that the Landau coefficients were obtained with the 
help of the algebraic computing processors MACSYMA and REDUCE. 
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Appendix A 
The Landau relation u4 = 0 at the NA, tricritical point implies 

b21& + b, V& + bo = 0, (A 1 )  
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where 

b2 = 18U3(48P5 + 104P4 - 16P3Q + 92P3 - 24P’Q + 42P’ - 12PQ + 1OP 

- 2Q + 1 )  + 108U2 W(20P6 + 36P5 - 24P4Q + 25P4 - 40P3Q + 8P3 

+ 4P2Q2 - 26P2Q + P’ + 4PQ2 - 8PQ + Q’ - Q )  + 54U2 

x (8P6 + 24P5 + 22P4 - 16P3Q + 8P3 - 8P2Q2 - 20P’Q + P2 

- 24P4Q + P4 + 8P3Q2 - 12P3Q + 12P2Q2 - 2P2Q + 6PQ2 + Q‘) 

- 8PQ2 - 8PQ - 2Qz - Q )  + 162UW2(8P7 + 12P6 - 16P5Q + 6P5 

+ 324UW(2P7 + 9P6 + 2P5Q + 6P5 - 15P4Q + P4 - 10P3Q2 

- 12P3Q + 3P2Q2 - 2P’Q + 6PQ3 + 6PQ2 + 3Q3 + Q’) + 486W’ 

x (4P7 + 4P6Q + P6 - 12P5Q - 12P4Q2 - 3P4Q + 12P3Q2 

+ 12P2Q3 + 3P2Q2 - 4PQ3 - 4Q4 - Q3),  

= 3U4(-320P6 - 832P5 + 128P4Q - 912P4 + 256P3Q - 544P3 6, 
+ 192P2Q - 188P2 + 64PQ - 36P + 8Q - 3) + 18U3 W 

+ 312P3Q - 12P3 - 48P2Q2 + 14OP’Q - P2 - 24PQ2 + 32PQ 

- l12P4 + 64P3Q2 + 144P3Q - 30P3 + 96P2Q2 + 104P2Q - 3p2 

+ 48PQ2 + 30PQ + 8Q’ + 3Q) + 27U2 W2(64P6Q + 4P6 + 128P5Q 

x (-64P7 - 144P6 + 160P5Q - 128P5 + 352P4Q - 56P4 - 32P3Q2 

- 4Q’ + 3Q) + 9U3(-32P7 - 144P6 - 32P5Q - 192P5 + 48P4Q 

+ 4P5 - 64P4Q2 + 88P4Q + P4 - 128P3Q2 + 24P3Q - 92P2Q2 

+ 2P’Q - 28PQ’ - 3Q’) + 54U2W(-24P7 - 16P6Q - 28P6 

+ 64P5Q - l o p 5  + 64P4Q2 + 92P4Q - P4 + 8P3Q2 + 36P3Q 

+ 81UW2(2P7 + 32P6Q + P6 + 32P5Q2 + 18P5Q - 48P4Q2 + P4Q 

- 64P3Q3 - 42P3Q2 - 5P2Q2 + 32PQ4 + 22PQ3 + 16Q4 + 3Q3), 

- 48P2Q3 - 52P2Q2 + 4P’Q - 48PQ3 - 26PQ‘ - 12Q3 - 3Q’) 

b, = Us(256P7 + 768P6 - 128P’Q + 992P5 - 320P4Q + 720P4 - 320P3Q 

+ 320P3 - 16OP’Q + 88P2 - 40PQ + 14P - 4Q + 1 )  

+ 3U4W(-256P6Q - 16P6 - 704P5Q - 32P5 + 64P4Q2 - 800P4Q 

- 24P4 + 128P3Q2 - 480P3Q - 8P3 + 96P2Q2 - 160P’Q - P2 

+ 32PQ2 - 28PQ + 4Q’ - 2Q) + 3U4(64P7 + 64P6Q + 144P6 

+ 64P5Q + 128P’ - 64P4Q2 - 48P4Q + 56P4 - 128P3Q2 - 96P3Q 

+ 12P3 - 96P2Q2 - 52P’Q + P’ - 32PQ’ - 12PQ - 4Q2 - Q )  

+ 9U3 W’Q(64P5Q + 8P5 + 160P4Q + 12P4 + 152P3Q + 6P3 

+ 68P’Q + P2 + 14PQ + Q )  + 9U3 W ( - 8 P 7  - 96P6Q - 12P6 
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- 96P5Q2 - 152P’Q - 6P5 - 48P4Q2 - 84P4Q - P4 + 96P3Q3 

+ 88P3Q2 - 18P3Q + 144P2Q3 + 84P2Q2 - P2Q + 72PQ3 + 24PQ2 

+ 12Q3 + 2Q’) + 27U2 W2Q(4P6 + 32P’Q + 4P’ + 32P4Q2 + 32P4Q 

+ P4 + 8P3Q - 32P2Q3 - 28P2Q2 - 32PQ3 - 12PQ2 - 8Q3 - Q 2 )  

and 

Appendix B 
The Landau relations a, = u4 = 0 for the A,A, phase transition in the ideal 

The solution of the equation u2 = 0 is 
nematic order approximation lead to the following relationships. 

?qt: + 7* + 22 - 22) - t,t 
V3(22: + t 2 t  + 2t - 2) - t2(t2 + 1) 

v , =  

The equation u4 = 0 gives 

3V$[24ti + 8~:(10 - 7t) + 2t;(123t2 - 1402 + 28) + 16t:(-4t3 

+ l l t2  - 2t - 5) + t;(320t4 - 507t3 - 42t2 + 3481 - 120) + 82:(8t4 

- lot3 - 7t2 + I l t  - 2) + 42:(4t6 + 61t’ - 247t4 + 319P - lSl?  

+ 4t + 10) + 16t2(-22f6 + 12t’ - 29t4 + 34t3 - 182’ + 2t + 1) 

+ 4t(3t6 - 6t’ - 19t4 + 76t3 - 992, + 582 - 13)] + 42, G3t[- 5 2 ~ ;  

+ 4t:(29 - 41t) + 2~,4(50 - 57t2 + 7t) + tz(-152t3 + 1091’ 

+ 190t - 144) + 24(22 - 2t4 - 88t3 + 213e - 145t) + 27, 

x (14 - 49t4 + 151t3 - 141t2 + 25t)+ 4(2t5 - 25t4 + 86t3 

- 128t2 + 88t - 23)] + 6~iV3~t[36t: + 2t;(33t - 16) + 16tz(3t2 

+ t - 4) + 3t:(4t3 + 27e - 56t + 24) + 4t,(8t3 - 12? 

- 3t + 7) + 2(t4 + l l t 3  - 45? + 53t - 20)] + 122:V,t[-82,4 

- 8t:t + 2&8 - t2 - 7 t )+  t2t(8 - 7t) + 2(-3t2 + 7t - 4)] 

+ z:t[l6t$ + 24(t + 8) + 16z2(t - 1) - t2 + 141 - 161 = 0 

In deriving (B 1) and (B 2), use has been made of (a) the self-consistent equations for 
t2 in the A, phase, 

where I,, (n = 0, 1) are the modified Bessel functions of integer order; and (b) the 
standard recurrence relations between I,. 
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